<form id="1949c"></form>
    <dd id="1949c"><track id="1949c"></track></dd>

  1. <nav id="1949c"></nav>

      <em id="1949c"><tr id="1949c"></tr></em>

    1. <th id="1949c"><pre id="1949c"><dl id="1949c"></dl></pre></th>
      
      <th id="1949c"><big id="1949c"></big></th>

      <rp id="1949c"><object id="1949c"><input id="1949c"></input></object></rp>

        CSCD來源期刊
        中國科技核心期刊
        RCCSE中國核心學術期刊
        JST China 收錄期刊

        留言板

        尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

        姓名
        郵箱
        手機號碼
        標題
        留言內容
        驗證碼

        高鐵酸鹽在飲用水處理中的研究進展

        趙曉娜 李洋 王魯 劉玉蕾 黃壯松 馬軍

        趙曉娜, 李洋, 王魯, 劉玉蕾, 黃壯松, 馬軍. 高鐵酸鹽在飲用水處理中的研究進展[J]. 環境工程, 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
        引用本文: 趙曉娜, 李洋, 王魯, 劉玉蕾, 黃壯松, 馬軍. 高鐵酸鹽在飲用水處理中的研究進展[J]. 環境工程, 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
        ZHAO Xiaona, LI Yang, WANG Lu, LIU Yulei, HUANG Zhuangsong, MA Jun. RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
        Citation: ZHAO Xiaona, LI Yang, WANG Lu, LIU Yulei, HUANG Zhuangsong, MA Jun. RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003

        高鐵酸鹽在飲用水處理中的研究進展

        doi: 10.13205/j.hjgc.202309003
        基金項目: 

        國家重點研發計劃"生物安全理化防護及復雜環境洗消技術與裝備"(2021YFC2600303)

        詳細信息
          作者簡介:

          趙曉娜(1997-),女,研究生,主要研究方向為高鐵酸鹽氧化技術。

          通訊作者:

          王魯(1988-),男,教授,主要研究方向為水處理功能材料制備與應用。wanglu9195@163.com

        RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT

        • 摘要: 隨著水生態環境污染問題的加重和人們對飲用水安全的日益重視,亟需研發更高效、低碳、能夠適用于復雜污染水體的水處理工藝。作為一種綠色多功能的水處理藥劑,高鐵酸鹽在飲用水處理中具有廣闊的應用前景。主要綜述了近年來高鐵酸鹽Fe (Ⅵ)在飲用水處理領域的研究進展,重點介紹了Fe (Ⅵ)的氧化特性和反應機制,以及Fe (Ⅵ)還原生成的鐵(氫)氧化物顆粒的吸附特性,闡述了強化Fe (Ⅵ)氧化和吸附效能的調控策略,綜合討論了Fe (Ⅵ)在氧化去除有機污染物、控制消毒副產物生成、去除水中重金屬離子、強化混凝和緩解膜污染等方面的處理效果和作用機制,并對Fe (Ⅵ)在飲用水處理中的應用前景和發展趨勢進行了展望。
        • [1] SUN S, LIU Y, MA J, et al. Transformation of substituted anilines by ferrate(Ⅵ):kinetics, pathways, and effect of dissolved organic matter[J]. Chemical Engineering Journal, 2018, 332:245-252.
          [2] LEE Y, VON GUNTEN U. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment[J]. Water Research, 2012, 46(19):6177-6195.
          [3] KAMACHI T, KOUNO T, YOSHIZAWA K. Participation of multioxidants in the pH dependence of the reactivity of ferrate(Ⅵ)[J]. The Journal of Organic Chemistry, 2005, 70(11):4380-4388.
          [4] LEE Y, YOON J, VON GUNTEN U. Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(Ⅵ))[J]. Environmental Science & Technology, 2005, 39(22):8978-8984.
          [5] KARLESA A, de VERA G A D, DODD M C, et al. Ferrate(Ⅵ) oxidation of β-lactam antibiotics:reaction kinetics, antibacterial activity changes, and transformation products[J]. Environmental Science and Technology, 2014, 48(17):10380-10389.
          [6] SHARMA V K, MISHRA S K, NESNAS N. Oxidation of sulfonamide antimicrobials by ferrate(Ⅵ)[J]. Environmental Science & Technology, 2006, 40(23):7222-7227.
          [7] SUN S, JIANG J, PANG S, et al. Oxidation of theophylline by Ferrate (Ⅵ) and formation of disinfection byproducts during subsequent chlorination[J]. Separation and Purification Technology, 2018, 201:283-290.
          [8] HU L, MARTIN H M, ARCE-BULTED O, et al. Oxidation of carbamazepine by Mn(Ⅶ) and Fe(Ⅵ):reaction kinetics and mechanism[J]. Environmental Science & Technology, 2009, 43(2):509-515.
          [9] ISLAM A, JEON D, RA J, et al. Transformation of microcystin-LR and olefinic compounds by ferrate(Ⅵ):oxidative cleavage of olefinic double bonds as the primary reaction pathway[J]. Water Research, 2018, 141:268-278.
          [10] CHEN J, WU N, XU X, et al. Fe(Ⅵ)-mediated single-electron coupling processes for the removal of chlorophene:a combined experimental and computational Study[J]. Environmental Science & Technology, 2018, 52(21):12592-12601.
          [11] ZHAO X N, HUANG Z S, WANG G J, et al. Highly efficient utilization of ferrate(Ⅵ) oxidation capacity initiated by Mn(Ⅱ) for contaminant oxidation:role of manganese species[J]. Environmental Science & Technology, 2023, 57(6):2527-2537.
          [12] KYRIAKOS M, GEORGE N, K. R A, et al. Oxidation of caffeine by acid-activated ferrate(Ⅵ):effect of ions and natural organic matter[J]. AIChE Journal, 2017, 63(11):4998-5006.
          [13] FENG M, BAUM J C, NESNAS N, et al. Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate(Ⅵ):kinetics and mechanistic insight into SO2 extrusion[J]. Environmental Science & Technology, 2019, 53(5):2695-2704.
          [14] ZHANG X, FENG M, LUO C, et al. Effect of metal ions on oxidation of micropollutants by ferrate(Ⅵ):enhancing role of Fe(Ⅳ) species[J]. Environmental Science & Technology, 2020, 55(1):623-633.
          [15] ZHU J, YU F, MENG J, et al. Overlooked role of Fe(Ⅳ) and Fe(Ⅴ) in organic contaminant oxidation by Fe(Ⅵ)[J]. Environmental Science & Technology, 2020, 54(15):9702-9710.
          [16] WANG S, DENG Y, SHAO B, et al. Three kinetic patterns for the oxidation of emerging organic contaminants by Fe(Ⅵ):the critical roles of Fe(Ⅴ) and Fe(Ⅳ)[J]. Environmental Science & Technology, 2021, 55(16):11338-11347.
          [17] HUANG Z S, WANG L, LIU Y L, et al. Ferrate self-decomposition in water is also a self-activation process:role of Fe(Ⅴ) species and enhancement with Fe(Ⅲ) in methyl phenyl sulfoxide oxidation by excess ferrate[J]. Water Research, 2021, 197:117094.
          [18] SHARMA V K, ZBORIL R, VARMA R S. Ferrates:Greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015, 48(2):182-191.
          [19] Sharma V K. Oxidation of inorganic contaminants by ferrates(Ⅵ, Ⅴ, and Ⅳ)-kinetics and mechanisms:a review[J]. Journal of Environmental Management, 2011, 92(4):1051-1073.
          [20] FENG M, JINADATHA C, MCDONALD T J, et al. Accelerated oxidation of organic contaminants by ferrate(Ⅵ):the overlooked role of reducing additives[J]. Environmental Science & Technology, 2018, 52(19):11319-11327.
          [21] 黃壯松. K2FeO4氧化污染物過程高價態鐵的轉化行為及其強化機制[D]. 哈爾濱:哈爾濱工業大學, 2022.
          [22] SHAO B, DONG H, SUN B, et al. Role of ferrate(Ⅳ) and ferrate(Ⅴ) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants[J]. Environmental Science & Technology, 2019, 53(2):894-902.
          [23] TIAN S Q, WANG L, LIU Y L, et al. Degradation of organic pollutants by ferrate/biochar:enhanced formation of strong intermediate oxidative iron species[J]. Water Research, 2020, 183:116054.
          [24] PAN B, FENG M, MCDONALD T J, et al. Enhanced ferrate(Ⅵ) oxidation of micropollutants in water by carbonaceous materials:elucidating surface functionality[J]. Chemical Engineering Journal, 2020, 398:125607.
          [25] LUO M, ZHANG H, ZHOU P, et al. Graphite (GP) induced activation of ferrate(Ⅵ) for degradation of micropollutants:the crucial reduction role of carbonyl groups on GP surface[J]. Journal of Hazardous Materials, 2022, 434:128827.
          [26] SUN S F, JIANG J, QIU L P, et al. Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols:kinetics, products, and involvement of Fe(Ⅴ)/Fe(Ⅳ)[J]. Water Research, 2019, 156:1-8.
          [27] LEE Y, KISSNER R, VON GUNTEN U. Reaction of ferrate(Ⅵ) with ABTS and self-decay of ferrate(Ⅵ):kinetics and mechanisms[J]. Environmental Science & Technology, 2014, 48(9):5154-5162.
          [28] LUO M, ZHOU H, ZHOU P, et al. Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate(Ⅵ) towards oxidation of organic contaminants[J]. Water Research, 2021, 203:117548.
          [29] WU S, LI H, LI X, et al. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants[J]. Chemical Engineering Journal, 2018, 353:533-541.
          [30] 韓琦. 臭氧和高鐵酸鹽氧化降解水中四溴雙酚A的效能與機制[D]. 深圳:哈爾濱工業大學(深圳), 2018.
          [31] HE H, LIU Y, WANG L, et al. Novel activated system of ferrate oxidation on organic substances degradation:Fe(Ⅵ) regeneration or Fe(Ⅵ) reduction[J]. Separation and Purification Technology, 2023, 304:122322.
          [32] LUO M, ZHANG H, ZHOU P, et al. Efficient activation of ferrate(Ⅵ) by colloid manganese dioxide:comprehensive elucidation of the surface-promoted mechanism[J]. Water Research, 2022, 215:118243.
          [33] MANOLI K, LI R, KIM J, et al. Ferrate(Ⅵ)-peracetic acid oxidation process:rapid degradation of pharmaceuticals in water[J]. Chemical Engineering Journal, 2022, 429:132384.
          [34] WANG J, KIM J, ASHLEY D C, et al. Peracetic acid enhances micropollutant degradation by ferrate(Ⅵ) through promotion of electron transfer efficiency[J]. Environmental Science & Technology, 2022, 56(16):11683-11693.
          [35] YANG T, MAI J, CHENG H, et al. UVA-LED-assisted activation of the ferrate(Ⅵ) process for enhanced micropollutant degradation:important role of ferrate(Ⅳ) and ferrate(Ⅴ)[J]. Environmental Science & Technology, 2021, 56(2):1221-1232.
          [36] MAI J, YANG T, MA J. Novel solar-driven ferrate(Ⅵ) activation system for micropollutant degradation:elucidating the role of Fe(Ⅳ) and Fe(Ⅴ)[J]. Journal of Hazardous Materials, 2022, 437:129428.
          [37] GAN W, SHARMA V K, ZHANG X, et al. Investigation of disinfection byproducts formation in ferrate(Ⅵ) pre-oxidation of NOM and its model compounds followed by chlorination[J]. Journal of Hazardous Materials, 2015, 292:197-204.
          [38] JIANG Y, GOODWILL J E, TOBIASON J E, et al. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination[J]. Water Research, 2019, 156:110-124.
          [39] LIU J, LUJAN H, DHUNGANA B, et al. Ferrate(Ⅵ) pretreatment before disinfection:an effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters[J]. Environment international, 2020, 138:105641.
          [40] HUANG X, DENG Y, LIU S, et al. Formation of bromate during ferrate(Ⅵ) oxidation of bromide in water[J]. Chemosphere, 2016, 155:528-533.
          [41] JIANG Y, GOODWILL J E, TOBIASON J E, et al. Bromide oxidation by ferrate(Ⅵ):the formation of active bromine and bromate[J]. Water Research, 2016, 96:188-197.
          [42] LI G, JIANG J, HE M, et al. Enhancing ferrate oxidation of micropollutants via inducing Fe(Ⅴ)/Fe(Ⅳ) formation needs caution:increased conversion of bromide to bromate[J]. Environmental Science & Technology, 2023.
          [43] DONG H, QIANG Z, RICHARDSON S D. Formation of iodinated disinfection byproducts (I-DBPs) in drinking water:emerging concerns and current issues[J]. Accounts of Chemical Research, 2019, 52(4):896-905.
          [44] SHIN J, VON GUNTEN U, RECKHOW D A, et al. Reactions of ferrate(Ⅵ) with iodide and hypoiodous acid:kinetics, pathways, and implications for the fate of iodine during water treatment[J]. Environmental Science & Technology, 2018, 52(13):7458-7467.
          [45] WANG X, LIU Y, HUANG Z, et al. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I-/HA system[J]. Water Research, 2018, 144:592-602.
          [46] WANG X S, LIU Y L, XU S Y, et al. Ferrate oxidation of phenolic compounds in iodine-containing water:control of iodinated aromatic products[J]. Environmental Science & Technology, 2019, 54(3):1827-1836.
          [47] WANG X S, LIU Y L, LI M, et al. Occurrence of iodophenols in aquatic environments and the deiodination of organic iodine with ferrate(Ⅵ)[J]. Environmental Science & Technology, 2022, 56(22):16104-16114.
          [48] YANG T, WANG L, LIU Y, et al. Removal of organoarsenic with ferrate and ferrate resultant nanoparticles:oxidation and adsorption[J]. Environmental Science & Technology, 2018, 52(22):13325-13335.
          [49] GOODWILL J E, JIANG Y, RECKHOW D A, et al. Characterization of particles from ferrate preoxidation[J]. Environmental Science & Technology, 2015, 49(8):4955-4962.
          [50] 何世鼎, 李海寧, 王凱凱, 等. 高鐵酸鹽去除廢水中重金屬及其他污染物的研究進展[J]. 工業水處理, 2019, 39(5):5-9.
          [51] KRALCHEVSKA R P, PRUCEK R, KOLARIK J, et al. Remarkable efficiency of phosphate removal:ferrate(Ⅵ)-induced in situ sorption on core-shell nanoparticles[J]. Water Research, 2016, 103:83-91.
          [52] LAN B, WANG Y, WANG X, et al. Aqueous arsenic(As) and antimony(Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292:389-397.
          [53] PRUCEK R, TUČEK J, KOLAŘÍK J, et al. Ferrate(Ⅵ)-prompted removal of metals in aqueous media:mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides[J]. Environmental Science & Technology, 2015, 49(4):2319-2327.
          [54] VIKTOR Z, WANG L, MA J. Promotional effect of Mn(Ⅱ)/K2FeO4 applying onto Se(Ⅳ) removal[J]. Journal of Hazardous Materials, 2020, 384:121264.
          [55] 劉玉蕾. 高鐵酸鉀的制備及去除水中鉈、吲哚和處理污水廠污泥的效果與機理[D]. 哈爾濱:哈爾濱工業大學, 2018.
          [56] MA J, LIU W. Effectiveness of ferrate (Ⅵ) preoxidation in enhancing the coagulation of surface waters[J]. Water Research, 2002, 36(20):4959-4962.
          [57] 曲久輝, 林謖, 田寶珍, 等. 高鐵酸鹽氧化絮凝去除水中腐殖質的研究[J]. 環境科學學報, 1999, (5):510-514.
          [58] 李春娟, 馬軍, 梁濤. 高鐵酸鹽預氧化對松花江水混凝效果的影響[J]. 環境科學, 2008, (6):1550-1554.
          [59] MA J, LIU W. Effectiveness and mechanism of potassium ferrate(Ⅵ) preoxidation for algae removal by coagulation[J]. Water Research, 2002, 36(4):871-878.
          [60] 張忠祥, 宋浩然, 張偉, 等. 高鐵酸鉀預氧化強化混凝除藻效能及機理研究[J]. 中國給水排水, 2019, 35(15):31-36.
          [61] LIU J, HE K, TANG S, et al. A comparative study of ferrous, ferric and ferrate pretreatment for ceramic membrane fouling alleviation in reclaimed water treatment[J]. Separation and Purification Technology, 2019, 217:118-127.
          [62] LIU J, ZHANG Z, LIU Z, et al. Integration of ferrate (Ⅵ) pretreatment and ceramic membrane reactor for membrane fouling mitigation in reclaimed water treatment[J]. Journal of Membrane Science, 2018, 552:315-325.
          [63] LIU J, ZHANG Z, CHEN Q, et al. Synergistic effect of ferrate (Ⅵ)-ozone integrated pretreatment on the improvement of water quality and fouling alleviation of ceramic UF membrane in reclaimed water treatment[J]. Journal of Membrane Science, 2018, 567:216-227.
          [64] HE H Y, QIU W, LIU Y L, et al. Ferrate preoxidation alleviating membrane fouling through the formation of a hydrophilic prefiltration layer[J]. ACS ES&T Engineering, 2021, 1(11):1576-1586.
          [65] YU W, YANG Y, GRAHAM N. Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment[J]. Chemical Engineering Journal, 2016, 298:234-242.
          [66] HE H Y, QIU W, LIU Y L, et al. Effect of ferrate pre-oxidation on algae-laden water ultrafiltration:attenuating membrane fouling and decreasing formation potential of disinfection byproducts[J]. Water Research, 2021, 190:116690.
        • 加載中
        計量
        • 文章訪問數:  320
        • HTML全文瀏覽量:  47
        • PDF下載量:  22
        • 被引次數: 0
        出版歷程
        • 收稿日期:  2023-08-10
        • 網絡出版日期:  2023-11-15

        目錄

          /

          返回文章
          返回
          玖玖精品免费视频,久久免费精品影院,欧美精品视频第一区,精品免费久久久久久久中文